
An advantage of this method is its flexibility in the sense that the assumptions for which it can be used are not very 
burdensome. Nevertheless, it should be noted that since the method is not based on an explicit probability model, its 
properties are not completely defined. Assuming also the fact that in practice all the subsequent processing of non- 
stationary random processes of the form (1) is based on the results of an estimate of a time-varying mean, we carried out a 
numerical experiment with the algorithm described by (6). The results showed that the region in which this algorithm can 
be used with a reasonable degree of accuracy corresponds to the region in which it can be used in the automated data- 
processing system. In Fig. 2 we present an estimate of the varying mean value of a nonstationary process obtained using 
this method. 

All the algorithms considered form the basis of the software of an actual automated system for processing the data 
of a thermal experiment. 

Notation 

{x(~)}, a nonstationary random process; {y(~)Lan unknown random process (in a special case, a stationary random 
process); A(I"), a deterministic process; r, time; M[y(r)], mean value of the random process {y(~)}; 9[y(~)l =~2, variance of the 
random process {y(~)} ; Ri, difference between the recorded and predicted values; c, relative accuracy; ~, estimate of the 
mean value of the random process; Cs, a weighting coefficient; and T, observation period. 
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THE PROBLEM OF PLANNING THERMAL MEASUREMENTS 

S. A. Budnik UDC 536.24.083 

The solution of the problem of planning thermal measurements is considered. Cubic splines are used for a 
mathematical description of the relations investigated. 

Optimum planning of measurements is being increasingly introduced into experimental research at the present time. 
A fairly full review of papers devoted to this question is contained in [ 1, 2]. A large number of papers are devoted to the 
theory and general methods of solution, but a much smaller number consider the practical application of these methods for 
planning physical, and in particular, thermal (laboratory and natural) experiments [3-5]. This is largely due to the complexity 
of the mathematical description of nonstationary heat and mass transfer processes which are encountered in practice, and also 
due to the rigid limitations imposed on the number of repeated experiments, due to the considerable material costs in pre- 
paring and carrying them out. 

Methods of planning, which are becoming more and more widely used, are based on the assumption that the process 
is linear with respect to the parameters of the mathematical model of the process being investigated or on the possibility of 
linearizing it [3, 6, 7]. In addition, a number of fairly rigid constraints are imposed on the chosen model and on the 
required optimum plan, such as the requirement that the points of the plan should be orthogonal, that these points should 
be symmetrical, etc. [6]. In the case of several monitored variables, when the model is nonlinear, or when the conditions 
under which the experiment is carried out change with time, these methods are inapplicable and it is necessary to employ 
sequential planning. 

Below we consider the problem of planning measurements when carrying out a thermal experiment. The purpose of 
the experiment is to determine the distribution of the parameter of nonstationary heat exchange P(x, 7-) on the surface of a 
solid as a function of the coordinate x and the time r. These parameters may be the pressure, convective and radiation 
thermal flows, the surface temperature, removal of mass, etc. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 39, No. 2, pp. 225-230, August, 1980. Original article 
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The problem will be formulated as follows: it is required to determine the number of  measurements (the number 
of pickups n and number of  interrogations of  each pickup mk) and the measurement plan (the arrangement of  the measure- 

h ments in space e~, = {xT~}, k = 0, 1 . . . . .  n, and time e~={~z}, l = 0,1 . . . . .  ink_) so that when these measurements are 
carried out and processed the investigated relationship P(x, "r) (x~@~x~,  "c,~ ~ ' c  ~-~ %) will be obtained with a specified 

/z 

accuracy at minimum cost (the minimum number of  measurements M = ~ mh ) or, if  the number of measurements is 
h = l  

restricted, with maximum accuracy for a specified number of  measurements. 

We make the following assumptions: the parameter  being investigated is measured directly, the results of  the 
measurements Yk z at points of  the plan x~, ~, k=O, 1 ..... n, I=0, 1 ..... mh, contain measurement errors, and for the 
average value of  ~k,l the following condit ion is satisfied: 

E(Y/~ = P(~. (1) 

Here z ~ = ]Ix, T[I is the vector of the monitored variables, and E is_the averaging operator. The measurement errors are 
in the form of random noise with zero expectation and variance a2(z).  The errors in determining x and ~- are ignored, and 
information on the nature of  the relationship P(z) and the measurement errors are specified a priori. 

We will use cubic splines for a mathematical description of  the relationship P(z). This type of  function is a fairly 
universal and accurate means of  representing the relationships considered, and it is possible to compile relatively simple 
algorithms to construct them [8, 9]. 

The method of  processing the measurement results is determined by the choice of  the mathematical description of  
P(z)  and consists in constructing cubic splines from the results of  the measurements at points of  the opt imum plan. Since 
results of  the measurements contain random errors, we chose smoothing splines. 

The function S(x)cC~(x~, xb) that minimizes the integral 

x b 

S [S" (x)]Zdx. (2) 
x G 

will be called a cubic smoothing spline when the following inequality is satisfied: 
// 

"9 [S(x~)-  Y,, t ~ < a ,  6-v-2 

where Yk are the values of  the smoothed function at nodal points of  the spline Xk; ~ >~ 0 represents the degree of  smooth- 
ing, and S(x) in each section [Xk_l, x k] of  the network Ah : x~= x0 < x~ < . . .  <~ x~ = x b is a cubic polynomial  of the form 

3 

S(x)=S~(x)= ~_ah.i(xl~--x) ~, k = 0, 1 . . . . .  n, (4) 
i = 0  

and satisfies the boundary condit ion 

S"(Xo) = S " ( x ~ )  = o.  

When c~ = 0 the smoothing spline becomes an interpolating spline. The value of  6Y k is related to the variance of  the 
measurement error by the equation 

(5) 

~ r ~ = V ~ ,  k = 0, 1 . . . . .  n. (6) 

In the majori ty of  thermal experiments the change in the plan e x during the experiment is a technically complex 
problem, and is often unsolvable in practice. It is therefore advisable to divide the planning problem into two for the 
variables x a n d r  respectively, i.e., we first construct a plan e x that is opt imum for the whole range of  variation of r, arm 
then determine e k 

We will choose as the criterion of optimali ty of  the plan e x the minimum of  the functional 

L N 

Fo = Z .~  "~ [S(xj, xt~, "c~)--P(xj, ~)12--~ rain, k = 0, I , .  . . ,  n, (7) 
i = 0  ] 5 0  x h ' n  

the values of  which represent the sum of  the squares of  the deviations of  the spline S(x, xk), which approximates the values 
Yk i with respect to the relationship P(x) at each instant of  time r i. The values of  Yk i are formed on the basis of  a table 
of ' /he  specified relationship P (xj, Ti), {Ix0, xN] [~, ~L 1}, on which random noise with'variance o~(xi, ~i) is superimposed. 
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The condition for choosing the plan of interrogation of the k-th pickup er k has the form 

L 

F i =  3 [ S ( ' q ,  %,)--P( 'q ,  xh)l~-+min, l = 0 ,  1 . . . . .  ml,, 
i=O zl'mh 

where S (~, ~) are the values of the corresponding spline, and r t are its nodal points. 

If, in the conditions under which the experiment is carried out, it is necessary to construct an overall plan %, 
opt imum for all the pickups, we obtain 

Fo == [S('q "t'z, x ~ ) - - P ( ' q ,  xl,)p--*min, 1 =  O, 1 m. 
k = 0  i : 0  "~l'm 

Here" S (~i, ~, xh) are the values of the smoothing spline which approximates Yt at each point  x k. 
are continuous in time we will only solve problem (7). 

(8) 

(9) 

For  measurements that 

Hence, in the formulation of the problem considered the points of the opt imum plan are the normal points of  the 
corresponding splines, and the solution reduces to constructing opt imum splines in the sense of  (7), (8), or (9). The proce- 
dure for solving problem (7) is as follows. 

1. We specify n >1 3; as a rule it is convenient to begin with n = 3. 

2. We solve problem (7) for the chosen n; the method of conjugate gradients [ 10] is used to minimize the quadratic 
functional. The iterational process with respect to xk, k = 0, 1 . . . . .  n, is terminatedwhen the following condition is satisfied: 

f l F0(~, n) ~<a, (10) 

where 6 2> 0 is a previously specified number chosen from the requirements regarding the accuracy of the specific experi- 
ment, or the condit ion 

�9 l �9 l-t-I . 

max xh--xk ~51,  k = 0 ,  I . . . . .  n, x~ d (11) 

where 6 t > 0 is a previously specified small number which is chosen depending on the accuracy with which the probes are 
set up with respect to the coordinate x. 

If  condition (10) is satisfied we proceed to step 4, and if not  condit ion (11) is checked. I f  condition (11) is satis- 
fied we transfer to step 3, otherwise the solution of  problem (7) is continued for the chosen n. 

3. In the plan e x one point  n = n + 1 is added and we then proceed to step 2. 

4. End of the problem. 

We can set up a procedure for solving problems (8) and (9) in a similar manner. To construct smoothing splines we 
used the modified algorithm described in [9]. 

Depending on the amount and nature of the a priori information of  P(z) and o 2 (z), two approaches to solving the 
problem are possible. For  fairly complete information, e.g., when these relationships are known analytically or in the form 
of  tables from theresul t s  of a numerical simulation or experiments, while the aim of  the p lanned  measurements is to refine 
the relationship P(z), a static method of  planning is used. The lack of  information requires the use of  sequential planning, 
which consists of  a series of  stages: planning of  the carrying out of  the measurements, processing of the results, planning, 
etc. At  each stage of  the planning the problem is solved using the results of the preceding stages as a priori information�9 

To estimate the efficiency of the algorithm we solved a number of  model examples. The results of the solution of  
two of  these are presented below. In the first case we solved problem (7) assuming that the measurements were carried 
out  continuously in time and without  errors. Information on the relation P(x, T) investigated was specified in the form of  a 
table of  P(x r v i) in steps of  Ax = 0.1 and Ar = 1 sec. Figures l a  and b show P(x, r) with a step of Ar = 2 sec, which enables 
the nature of  the curves to be estimated as well as the values for n = 8 and r = 12, 20, 30, and 38 sec. 

Table 1 shows the coordinates of the opt imum plans with a number of points n --- 3-8, and values of  the parameters 
representing the accuracy of  the reconstruction P(x, r) from the results of measurements at the chosen points 

F o 
F:--  L N 

Z EE (xJ, 2 
i~0 ] ~ 0  

(12) 
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Fig. 1. Dependence  of the parameter  P on the 
dimensionless coordinate  x and the t ime r (sec) 
for r = 1-20 sec (a) and r = 22-40 sec (b): 1) 
the relationship P(x, r); 2) values reconstructed 
using the spline with n = 8, for r = 12, 20, 30, 
and 38 sec; 3) results of  measurements .  

TABLE 1. Coordinate  of  the Points  of  the Op t im um  Plans and Charac- 
teristics o f  the Accuracy with Which the Relat ion P(x, r) is 
Reconstructed 

0,00 
0,00 
0,00 
0,00 
0,00 
0,00 

0,89 
0,28 
0,30 
0,40 
0,23 
0,22 

X~ X 4 

2,00 
1,04 2,00 
1,05 1,54 
0,80 1,20 
0,67 1,06 
0,63 0,98 

2 ,O0 
1,60 
1,32 
1,21 

x a  x7 

2,00 
1,67 2,00 
1,36 1,67 2,00 

3,6.10 -3 ] 2,5.10 -~ J 0,025 
2,5.10 -4 [ 1,4.10 -4 t 0,020 
t,3.10-411,1.10-~10,017 
1 1.10 .4 6,3.10 -a 0,015 

10 -5 5,8.10 .5 0,012 

TABLE 2. Coordinates of  the Points  of  the Op t imum Plans and the 
Characteristics of  the Accuracy with Which the Relationship P(x) is 
Reconstructed 

. . . . . .  x~ xo ! ~.  J r ! Q 

0,00 
0,00 
0,00 
0,00 

0,44 
0,47 
0,28 
0,14 

Xs x4  

1,00 
0,68 1,00 
0,52 0,72 
0,39 0,57 

1,00 
0,89 1,00 

t1 ,0  1,,0/0 0  t,3.10 -2 ] 1,0.10 -~ 0,071 
78.10 -a 1,4. 

O, 032 513.10_ 3 9,9.10 -4 0,047 

~ is a quant i ty  similar to F-, calculated for a un i form plan e x ; 

max[S(x;, xh, Ti)--  P(xj, "%)[ 
Q = i.i (13) 

m axlP(x;, ~i)l 
1,1. 

These results show that  the chosen op t imum plan with n = 8 gives high accuracy in the reconst ruct ion of  P(x, r) 
over the whole range of  variation of  the moni to red  variables. The m a x i m u m  relative error Q = 1.2%. 

The error in reconstruct ing P(x, r) decreases as n increases. However, beginning at a certain n, any further  increase 
in the n u m b e r  of  points  ceases to have any effect on the error in practice. This proper ty  of  the relationships F(n)  and 
Q(n) must  be taken in to  account  when determining the value of  5 in (10).  

Comparing the values of  F- and ~ shown in Tables 1 and 2, we note  that  for small values of  n the accuracy with 
which P(x, v) is reconstructed depends to a considerable ex ten t  on the m a n n e r  in which it varies. For  large n the op t imum 
plans differ only slightly from uni form plans. 
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Fig. 2. Curves of  P as a function of the dimen- 
sional coordinate x: 1) the relationship P(x); 
2) the relationship reconstructed using a spline 
with n = 6, 3) measurement results. 

We also solve the problem of planning for the relationship 

P(x) - 2 - -  cos (2~ x) (14) 

in the interval [0, 1] when measurement errors are present in the form of random noise with a normal distribution N(0; 0; 
0.1). The relation P(x) was specified in the form of  a table P(x~), j = 0, 1 . . . . .  N, with a step Ax = 0.04. The variances of 
the measurement errors 02 = const = 0.01. 

Figure 2 shows curves of  P(x) and a curve reconstructed from the results of  measurements at points of  the optimum 
plan n = 6. The results of  the measurements were simulated by superimposing on the P(x) curve the component random 
noise with a normal distribution N(0; 0; 0.1). 

Table 2 shows coordinates of  the optimum plans for n = 3-6 and values of the parameters F-(n), ~ ( n ) ,  and Q(n). 
These results show that the conclusions drawn previously hold for the last example. 

NOTATION 

P, parameter being investigated; x, coordinate; r, time (sec); n, m, number of points of the plan; e x, eT, measurement 
plans; M, total number of  measurements; Yk,l' results of measurements; x k, r k, coordinates of the points of the plans; a 2 , 
variance of  the measurement errors; S, a cubic spline; 6Y k, mean square deviation of  the ordinate; ~, a smoothing parameter; 
F, a functional; 6, a specified constant; F-, Q, characteristics of  the reconstruction accuracy; Fp, characteristics of  the re- 
construction accuracy for a uniform plan; and Ax, Ar ,  steps of  the table. 
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